Pre-clinical Evaluation of Targeted Therapies for Pediatric Cancer

Carol J. Bult, Ph.D. & Malcolm A. Smith, M.D., Ph.D.

May 13, 2025

Today's Speakers

Carol J. Bult, Ph.D. Professor and Knowlton Family Chair at the Jackson Laboratory & Principal Investigator at

the PIVOT Coordinating Center

Malcolm A. Smith, M.D., Ph.D. Associate Branch Chief, Pediatric Oncology at the National Cancer Institute & Program Director for PIVOT

Pediatric Cancers Are Rare

- Contraction of the second seco
- 1 in 6,500 children and adolescents (under 20) diagnosed with cancer annually in the U.S.
- Leading cause of death by disease in children >1 year old (in U.S.)

Survival has improved significantly over the years

- Current 5-year survival following cancer diagnosis is ~85%
- ~500,000 survivors of childhood and adolescent cancer alive today in the US

https://www.cancer.org/cancer/types/cancer-in-children/key-statistics.html

https://www.cancer.gov/types/childhood-cancers/child-adolescent-cancers-fact-sheet

66

I survived cancer, but **at what cost?** My late effects didn't start until 8 years after diagnosis. My secondary cancer was 20 years after diagnosis.

The risks never end for childhood cancer survivors.

60% to more than 90% of survivors develop one or more chronic health conditions

CHILDREN'S CANCER CAUSE

https://www.cancer.gov/types/childhood-cancers/late-effects-hppdg#:~:text=20%25%20to%2080%25%20of%20survivors,life%2Dthreatening%20complications%20during%20adulthood

https://www.childrenscancercause.org/2023-survey-results

Molecularly Targeted Pediatric Cancer Treatment Options Are Limited

Challenges

- Large number of candidate agents
- Small number of patients
- Multiple cancer subtypes

https://www.aacr.org/blog/2023/04/28/annual-meeting-2023-the-past-present-and-future-of-targeted-therapies-for-pediatric-cancer/

Research to Accelerate Cures and Equity (RACE) for Children Act

115TH CONGRESS 1ST SESSION

To amend the Federal Food, Drug, and Cosmetic Act to establish a program to increase the development of new drugs to treat pediatric cancers, and for other purposes.

IN THE HOUSE OF REPRESENTATIVES

February 27, 2017

Mr. MCCAUL (for himself, Mr. BUTTERFIELD, Mr. DUFFY, and Ms. CLARKE of New York) introduced the following bill; which was referred to the Committee on Energy and Commerce

A BILL

To amend the Federal Food, Drug, and Cosmetic Act to establish a program to increase the development of new drugs to treat pediatric cancers, and for other purposes.

Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled,

SECTION 1. SHORT TITLE.

This Act may be cited as the "Research to Accelerate Cures and Equity for Children Act" or the "RACE for Children Act".

SEC. 2. DRUG DEVELOPMENT FOR PEDIATRIC CANCER.

(a) MOLECULAR TARGETS REGARDING CANCER DRUGS.—Section 505B of the Federal Food, Drug, and Cosmetic Act (<u>21 U.S.C. 355c</u>) is amended—

2017, enacted in August 2020

¹Hwang et al. 2019. J Natl Cancer Inst 112(3):224–228 ²Liu et al., 2024. Pediatrics

2007-2017¹

- 78 adult cancer drugs approved by FDA
- 17 (21.8%) drugs received pediatric labeling information

...modern cancer drugs target molecular pathways that may be shared by pediatric and adult cancers.²

~200 Molecular Targets with Relevance to Pediatric Cancer

CATEGORY	TARGET 💌	GENE/PATHWAY ALTERATION 👻	
A) Gene Abnormality	ABL1, ABL2	ABL1/ABL2 gene fusions (BCR-ABL1, etc.)	
A) Gene Abnormality	ACVR1	ACVR1	
A) Gene Abnormality	ALK	ALK and ALK gene fusions	
A) Gene Abnormality	ASCL1	ASCL1	
A) Gene Abnormality	BRAF	BRAF and BRAF gene fusions	
A) Gene Abnormality	CCND1, CCND2	CCND1, CCND2	
A) Gene Abnormality	CDK12	EWSR1-FLI1	
A) Gene Abnormality	CSF1R	CSF1R gene fusions	
A) Gene Abnormality	CTNNB1	CTNNB1	
A) Gene Abnormality	DDX3X	DDX3X	
A) Gene Abnormality	DOT1L	KMT2A (MLL) gene fusions	
A) Gene Abnormality	EED	EED	
A) Gene Abnormality	EGFR	EGFR	
A) Gene Abnormality	ETS gene fusions	ETS gene fusions (ERG, FLI1, ETV1)	
A) Gene Abnormality	EWSR1-FLI1	EWSR1-FLI1	
A) Gene Abnormality	EZH2	SMARCB1, SMARCA4	
A) Gene Abnormality	FGFR	FGFR and FGFR gene fusions	
A) Gene Abnormality	FLT3	FLT3	
A) Gene Abnormality	Gamma secretase	NOTCH1, FBXW7	
A) Gene Abnormality	GFI1	GFI1	
A) Gene Abnormality	GFI1B	GFI1B	
A) Gene Abnormality	Histone H3	H3K27M, H3G34R/V	
A) Gene Abnormality	IDH1	IDH1	
A) Gene Abnormality	IDH2	IDH2	
A) Gene Abnormality	JAK1, JAK2, JAK3	JAK1, JAK2, JAK3	
A) Gene Abnormality	кіт	кіт	
A) Gene Abnormality	KMT2A (MLL)	KMT2A (MLL) gene fusions (KMT2A-AFF1	
A) Gene Abnormality	LIN28B	LIN28B	
A) Gene Abnormality	MAP2K1 (MEK1), MAP2K2 (MEK2)	BRAF and BRAF gene fusions, MAP2K1,	
A) Gene Abnormality	MAPK3 (ERK1), MAPK1 (ERK2)	BRAF, MAP2K1	
A) Gene Abnormality	MDM2	MDM2, TP53	
A) Gene Abnormality	MEN1 (menin)	KMT2A (MLL) gene fusions	
A) Gene Abnormality	MET	MET and MET gene fusions	
Al Cana Abnormality	MTOP	TEC1 TEC2	

https://www.fda.gov/about-fda/oncology-center-excellence/pediatric-oncology

https://vagabondnetwork.com/blog/pediatric-vs-adult-cancers-why-are-children-not-just-small-adults/

Genomes of Pediatric and Adult Cancers Have Different Properties

S N Gröbner et al. Nature 555, 321-327 (2018) doi:10.1038/nature25480

PIVOT Program

Pediatric Preclinical In Vivo Testing Consortium (PIVOT)

Iome About PIVOT Publications and Presentations Contact Us

Advancing treatment options for children with cancer

The PIVOT consortium collaborates with industry partners on preclinical testing of molecularly targeted agents developed for adult cancers to evaluate their applicability to the treatment of pediatric cancer.

https://preclinicalpivot.org/

A program funded by the National Cancer Institute of the National Institutes of Health

 2004-2014
 Pediatric Preclinical Testing Program (PPTP)

2015-2021

Pediatric Preclinical Testing Consortium (PPTC)

2022-

Pediatric Preclinical In Vivo Testing (PIVOT)

PIVOT Consortium Members

Coordinating Center	Sarcomas, Kidney, Liver	Neuroblastoma	Childhood Leukemia	
The Jackson Laboratory Leading the search for tomorrow's cures	UT Health San Antonio Greehey Children's Cancer Research Institute	CH The Children's Hospital <i>of</i> Philadelphia®	Children's Cancer Institute	
Carol J. Bult, PhD Jeff H. Chuang, PhD Emily Jocoy, PhD	Peter J. Houghton, PhD Raushan Kurmasheva, PhD	Yael Mossé, MD John M. Maris, MD	Richard Lock, PhD	
Brain Tumors	Osteosarcoma	Soft Tissue Sarcomas	Sarcomas, Kidney, Rare Tumors	
Ann & Robert H. Lurie Children's Hospital of Chicago	THE UNIVERSITY OF TEXAS MDAnderson Cancer Center Children's Cancer Hospital®	St. Jude Children's Research Hospital	Memorial Sloan Kettering Cancer Center	
Xiao-Nan Li, MD, PhD	Richard G. Gorlick, MD	Michael A. Dyer, PhD Elizabeth Stewart, MD	Andrew Kung, MD, PhD Filemon Dela Cruz, MD	

PIVOT Uses Patient Derived Xenografts (PDXs) as Preclinical Models

Tentler et al. 2012. Nat Rev Clin Oncol 9, 338-350.

Key Features of PIVOT

- Testing is performed by seven highly qualified research programs that focus on specific childhood cancers
 - Agent provided by industry partner
 - No cost to the industry partner for testing
 - Collaboration model with presentation/publication of results expected
- PIVOT Coordinating Center at The Jackson Laboratory coordinates studies with industry partners and testing centers and performs data management/analysis for the consortium
- NCI provides scientific, technical, and regulatory assistance, advice, and oversight
 - The NCI Program Director for PIVOT is Dr. Malcolm Smith, Cancer Therapy Evaluation Program (CTEP)
 - Dr. Beverly Teicher is the NCI representative on the PIVOT Steering Committee

NIH NATIONAL CANCER INSTITUTE

General PIVOT Workflow

Experimental Design

Single mouse trial (SMT) More models, fewer mice per model

Model Selection

Gene expression for ERBB3 (aka HER3)

IHC for ERBB3 on PDX sarcoma tumors

Data from Treehouse Childhood Cancer Initiative

Presented at AACR 2023

Evaluating and Classifying Treatment Response

Solid tumors

- Event = 4X tumor volume from day 0
- Event Free Survival (EFS)
- Relative tumor volume change (RTV)

Blood cancers

- Event = >25% huCD45+ cells in peripheral blood
- Event Free Survival (EFS)
- % HuCD45 in blood cancers

ORM	ORM Code	Criteria
		< 50% tumor regression throughout
Progressive Disease	PD	study
		> 25% tumor growth at end of study
		PD
Progrossive Disease 1	DD1	the mouse's <u>time-to-event ≤ 200%</u>
Progressive Disease 1	PDI	the median time-to-event in control
		group
		PD
Prograssiva Disease 2	PD2	the mouse's time-to-event is > 200%
Progressive Disease 2		the median time-to-event in control
		group
	SD	< 50% tumor regression throughout
Stable Disease		study
Stable Disease		<u>≤ 25% tumor growth at end of</u>
		<u>study</u>
		≥ 50% tumor regression at any point
Partial Response	PR	during study but measurable tumor
		throughout study period
Complete Perpanse	CD	disappearance of measurable tumor
complete Response	CK	mass during the study period
		no measurable tumor mass for at
Maintained Complete Response	MCP	least 3 consecutive weekly readings
	MCK	at any time after treatment has been
		completed

Houghton et al. 2007. Pediatric Blood and Cancer 49(7):928-940

<u>Tumor Regression</u>, Not Slowing of Tumor Growth, Is PIVOT's Definition of an Active Agent

Objective Response Rate (ORR) Categories

- 1. Maintained Complete Response (MCR),
- 2. Complete Response (CR), and
- 3. Partial Response (PR)

Progressive Disease Categories

- 1. Progressive disease 1 (PD1): less than 2-fold prolongation to time of event
- 2. Progressive disease 2 (PD2): greater than 2-fold prolongation in time to event relative to vehicle controls

Pharmacology & Therapeutics 264 (2024) 108742

Lessons learned from 20 years of preclinical testing in pediatric cancers

Malcolm A. Smith^{a,*}, Peter J. Houghton^b, Richard B. Lock^c, John M. Maris^d, Richard Gorlick^e, Raushan T. Kurmasheva^b, Xiao-Nan Li^f, Beverly A. Teicher^a, Jeffrey H. Chuang^g, Filemon S. Dela Cruz^h, Michael A. Dyerⁱ, Andrew L. Kung^h, Michael W. Lloyd^j, Yael P. Mossé^d, Timothy M. Stearns^j, Elizabeth A. Stewartⁱ, Carol J. Bult^j, Stephen W. Erickson^k

https://pubmed.ncbi.nlm.nih.gov/39510293/

Lesson 1:

VEGF pathway inhibitors slow tumor growth but rarely cause objective responses in pediatric preclinical models, consistent with their clinical effect

VEGF Pathway Inhibitors

in vivo testing of multiple VEGF pathway inhibitors (cediranib, sunitinib, sorafenib, pazopanib, regorafenib, cabozantinib)

Xenograft Line	Histology	Response (Median Score)	Midpoint Difference	Overall Group Response	Heat Map
BT-29	Rhabdoid	2.0	-3.0	PD2	
KT-16	Rhabdoid	8.0	3.0	CR	
KT-14	Rhabdoid	2.0	-3.0	PD2	
KT-10	Wilms	5.0	0.0	SD	
KT-11	Wilms	0.0	-5.0	PD1	
KT-13	Wilms	2.0	-3.0	PD2	
SKNEP	Ewings/Kidney	2.0	-3.0	PD2	
EW5	Ewings	2.0	-3.0	PD2	
EW8	Ewings	2.0	-3.0	PD2	
Rh28	ALV Rhabdomyosarcoma	2.0	-3.0	PD2	
Rh30	ALV Rhabdomyosarcoma	2.0	-3.0	PD2	
Rh30R	ALV Rhabdomyosarcoma	2.0	-3.0	PD2	
Rh41	ALV Rhabdomyosarcoma	2.0	-3.0	PD2	
Rh18	EMB Rhabdomyosarcoma	2.0	-3.0	PD2	
BT-28	Medulloblastoma	0.0	-5.0	PD1	
BT-45	Medulloblastoma	2.0	-3.0	PD2	
BT-46	Medulloblastoma	0.0	-5.0	PD1	
GBM2	Glioblastoma	1.0	-4.0	PD1	
BT-39	Glioblastoma	0.0	-5.0	PD1	
D645	Glioblastoma	2.0	-3.0	PD2	
D456	Glioblastoma	2.0	-3.0	PD2	
NB-SD	Neuroblastoma	2.0	-3.0	PD2	
NB-1771	Neuroblastoma	2.0	-3.0	PD2	
NB-1691	Neuroblastoma	0.0	-5.0	PD1	
NB-EBc1	Neuroblastoma	2.0	-3.0	PD2	
CHLA-79	Neuroblastoma	2.0	-3.0	PD2	
NB-1643	Neuroblastoma	2.0	-3.0	PD2	
OS-1	Osteosarcoma	2.0	-3.0	PD2	
OS-2	Osteosarcoma	0.0	-5.0	PD1	
OS-17	Osteosarcoma	8.0	3.0	CR	
OS-33	Osteosarcoma	4.0	-1.0	SD	-
OS-31	Osteosarcoma	2.0	-3.0	PD2	
ALL-2	ALL B-precursor	0.0	-5.0	PD1	
ALL-3	ALL B-precursor	1.0	-4.0	PD1	
ALL-4	ALL B-precursor	1.0	-4.0	PD1	
ALL-7	ALL B-precursor	0.0	-5.0	PD1	
ALL-8	ALL T-cell	1.0	-4.0	PD1	
ALL-17	ALL B-precursor	0.0	-5.0	PD1	
ALL-19	ALL B-precursor	0.0	-5.0	PD1	

Maris JM, et al: Pediatr Blood Cancer 2008, 50(3):581-587

Low ORR for in vivo testing of multiple VEGF pathway inhibitors. Tumor growth delay, but <u>not</u> regression for this class of agents

	Solid Tumor		Acute Lymphoblastic Leukemia		
	VEGFR2-	Non-VEGFR2-	VEGFR2-	Non-VEGFR2-	
	Targeted	Targeted	Targeted	Targeted	
Models	158	2328	24	863	
tested					
ORR	4%	16%	8%	38%	
CR/MCR%	1%	10%	0%	30%	
PD2%	41 %	12%	13%	8%	
PD1%	47%	65%	79%	33%	
Total PD%	94%	81%	92%	60%	

Mirrors responses seen in clinical trials

Lesson 2:

Agents targeted to specific gene products (e.g., mutated kinases) rarely cause regressions in the absence of specific genomic alterations associated with sensitivity to the agent

Agents that target specific genomic alterations can be <u>effective</u> if the specific lesion is present

Agent	Agent Target	# Tested	Objective Response Rate	Responsive Models
Dasatinib	BCR::ABL1	43	2%	BCR::ABL1 ALL
Sunitinib	VEGFR2 & FLT3	45	9%	FLT3-mutated ALL
Selumetinib	MEK	46	4%	BRAF V600E mutated glioma
VTP-50469	Menin-KMT2A	16	38%	<i>KMT2A</i> -rearranged infant ALL
Talazoparib	PARP	44	7%	PALB2-mutant Wilms tumor

Agents that target specific genomic alterations are generally <u>ineffective</u> if the specific lesion is present

Agent	Agent Target	# Tested	Objective Response Rate	Responsive Models
Dasatinib	BCR::ABL1	43	2%	BCR::ABL1 ALL
Sunitinib	VEGFR2 & FLT3	45	9%	FLT3-mutated ALL
Selumetinib	MEK	46	4%	BRAF V600E mutated glioma
VTP-50469	Menin-KMT2A	16	38%	<i>KMT2A</i> -rearranged infant ALL
Talazoparib	PARP	44	7%	PALB2-mutant Wilms tumor

Lesson 3:

Many classes of targeted agents show limited tumorregressing activity across a broad range of pediatric cancers as exemplified by HDAC, HSP90, and proteasome inhibitors

What Have We Learned?

Preclinical *de-prioritization* of targeted agents for pediatric oncology is key

NIH

Overall Response Rates Across ~100 Agents Tested in Diverse Solid Tumors and Leukemia Preclinical Models

	Total Models	Solid Tumor	Acute Lymphoblastic Leukemia
Models tested	3382	2486	887
ORR	21%	15%	37%
CR/MCR%	15%	9%	29%
PD2%	13%	14%	9%
PD1%	56%	64%	34%
Total PD%	76%	82%	61%

Many Tested Agents Were Ineffective Across Most Models

 HDAC, HSP90, and proteasome inhibitors had limited tumor-regressing activity across a broad range of pediatric solid tumors

	HSP90 Inhibitors		HDAC Inhibitors		Proteasome Inhibitors	
	Solid Tumor	Acute Lymphoblastic Leukemia	Solid Tumor	Acute Lymphoblastic Leukemia	Solid Tumor	Acute Lymphoblastic Leukemia
Models tested	75	20	73	15	33	16
ORR	3 %	5 %	1 %	13 %	6 %	25 %
CR/MCR%	1 %	0 %	1 %	13 %	0 %	13 %
PD2 %	8 %	30 %	10 %	7 %	3 %	0 %
PD1 %	85 %	55 %	86 %	73 %	91 %	75 %
Total PD%	97 %	85 %	99 %	80 %	94 %	75 %

Objective Response Measure (ORM) results are provided for three HSP90 inhibitors [alvespimycin (17-DMAG), onalespib (AT13387), and ganetespib (STA9090)], for three HDAC inhibitors [vorinostat, quisinostat (JNJ26481585), and entinostat] and for two proteasome inhibitors (bortezomib and ixazomib). See Table 1 for a description of the ORM categories. References to primary publications for each agent are provided in the text.

- These agents had potent in vitro activity across a range of cell lines
- These agents showed little clinical activity for both pediatric and adult non-hematological cancers

Lesson 4:

Antibody drug conjugates (ADCs) are often effective in preclinical models, but overprediction of activity occurs

Antibody Drug Conjugates (ADCs)

I-DXd B7-H3 (CD276) directed ADC Ifinatamab Deruxtecan

This agent has shown great promise for treating small cell lung cancer in adult patients

Antibody - Linker - Payload

https://datasourcebydaiichisankyo.com/documents/14090001/14096298/WCLC-2023_I-DXd_Johnson_Oral_FINAL.pdf/dfc8673b-b3c3-9ed7-50d7-e48b4c9b3e5b

CD276 mRNA Is Highly Expressed in Diverse Pediatric Solid Tumors

CD276: mRNA Expression (RNA-Seq FPKM) (log2(value +

CD276 (B7-H3) Protein Is Highly Expressed in Diverse Pediatric Solid Tumors

Kendsersky NM, et al: Clin Cancer Res 2021, 27:2938-2946

Osteosarcoma

Neuroblastoma

A: Control (IV) vehicle, day1 and day15 B: Isotype control ADC (IV) 1mg/kg, day1 and day15 C: Isotype control ADC (IV) 3mg/kg, day1 and day15 D: Isotype control ADC (IV) 10mg/kg, day1 and day15 E: I-DXd (IV) 1mg/kg, day1 and day15 F: I-DXd (IV) 3mg/kg, day1 and day15 G: I-DXd (IV) 10mg/kg, day1 and day15

Rhabdomyosarcoma

Rh30

Presented at AACR 2023

Group

- B

- C

- D

- E

- F

- G

Event

No

▲ Yes

88

High ORR for In Vivo Testing of I-Dxd Dose-Dependent Response Shows Great Promise!

Model	Diagnosis	1 mg/kg		3 mg/kg		10 mg/kg	
		I-Dxd	IC-ADC	I-Dxd	IC-ADC	I-Dxd	IC-ADC
OS-9	Osteosarcoma	PD2	PD1	PR	PD1	MCR	PD1
OS-33	Osteosarcoma	PD2	PD1	MCR	PD1	MCR	SD
Felix	Neuroblastoma	PD2	PD1	MCR	PD1	MCR	PD2
COG-N-452X	Neuroblastoma	PD1	PD1	PD1	PD1	MCR	PD1
Rh30	Rhabdomyosarcoma	PD2	PD1	MCR	PD1	MCR	MCR
WT11	Wilmstumor	PD1	PD1	PD2	PD1	MCR	PD2

Antibody drug conjugates (ADCs) are often effective in preclinical models, but overprediction of activity occurs

Agent	Target	t Tumor Types Solid Tumor Acute Lyn		Solid Tumor		oblastic
			# Tested	ORR	# Tested	ORR
Coltuximab Ravtansine (SAR3419)	CD19	ALL	0	NA	3	100 %
Denintuzumab mafodotin (SGN-CD19A)	CD19	ALL	0	NA	7	71 %
Pivekimab sunirine (IMGN632)	CD123	ALL	0	NA	8	75 %
Zilovertamab vedotin (VLS-101)	ROR1	ALL, EWS	5	40 %	7	29 %
VLS-211	ROR1	ALL, EWS	5	60 %	7	43 %
Lorvotuzumab mertansine (IMGN901)	CD56	OS, RMS, NB, Rhabdoid, CNS, Wilms	25	36 %	0	NA
Glembatumumab vedotin (CDX-011)	GPINIMB	US, KIVIS	δ	38 %	0	NA
Telisotuzumab vedotin (ABBV-399)	MET	RMS	4	0 %	0	NA
Samrotamab vedotin (ABBV-085)	LRRC15	OS	7	29 %	0	NA
Rovalpituzumab tesirine (Rova-T)	DLL3	NB	10	20 %	0	NA
ADCT-701	DLK1	NB	12	58 %	0	NA
Trastuzumab deruxtecan (DS-8201A)	HER2	OS, EWS, RMS, NB, Rhabdoid, Wilms	39	56 %	0	NA
m276-PBD	CD276 (B7-H3)	OS, EWS, RMS, NB, Rhabdoid, Wilms	59	93 %	0	NA
Vobramitamab duocarmazine (MGC018)	CD276 (B7-H3)	NB	10	30 %	0	NA
All Models Tested			184	59 %	32	59 %

The number of solid tumor and leukemia models studied as well as the objective response rates (ORR) are shown for ADCs studied by the PPTP/C for solid tumor models and for acute lymphoblastic leukemia (ALL) models. Abbreviations: OS, osteosarcoma; EWS, Ewing sarcoma; RMS rhabdomyosarcoma; CNS, central nervous system tumors; NB, neuroblastoma; NA, not applicable. References to primary publications for each agent are provided in the text.

Cancer	
An International Interdisciplinary Journal of the American Cancer Society	
Original Article 🔯 Free Access	
ADVL1522: A phase 2 study of lorvotuzumab mertansine (IMGN901) in children with relapsed or refractory wilms tumor, rhabdomyosarcoma,	
neuroblastoma, pleuropulmonary blastoma, malignant	
peripheral nerve sheath tumor, or synovial sarcoma—A	Geller JI, et al: Cancer 2020,
Children's Oncology Group study	126 (24):5303-5310

- Lorvotuzumab mertansine (110 mg/m² per dose ≈ 3 mg/kg) was administered intravenously on days 1 and 8 of 21-day cycles.
- Diagnoses included Wilms tumor (n = 17), rhabdomyosarcoma (n = 17), neuroblastoma (n = 12), synovial sarcoma (n = 10), MPNST (n = 5), and pleuropulmonary blastoma (n = 1).
- One patient with rhabdomyosarcoma had a partial response, and 1 patient with synovial sarcoma achieved a delayed complete response.

Why the Overprediction for Clinical Activity?

Clinical translation of antibody drug conjugate dosing in solid tumors from preclinical mouse data

Baron Rubahamya¹, Shujun Dong¹, Greg M. Thurber^{1,2,3}*

Antibody drug conjugates (ADCs) have made impressive strides in the clinic in recent years with 11 Food and Drug Administration approvals, including 6 for the treatment of patients with solid tumors. Despite this success, the development of new agents remains challenging with a high failure rate in the clinic. Here, we show that current approved ADCs for the treatment of patients with solid tumors can all show substantial efficacy in some mouse models when administered at a similar weight-based [milligrams per kilogram (mg/kg)] dosing in mice that is tolerated in the clinic. Mechanistically, equivalent mg/kg dosing results in a similar drug concentration in the tumor and a similar tissue penetration into the tumor due to the unique delivery features of ADCs. Combined with computational approaches, which can account for the complex distribution within the tumor microenvironment, these scaling concepts may aid in the evaluation of new agents and help design therapeutics with maximum clinical efficacy.

Rubahamya B, Dong S, Thurber GM: *Sci Adv* 2024, **10**(22):eadk1894 See also: de Goeij BE, Lambert JM: *Curr Opin Immunol* 2016, **40**:14-23

Lorvotuzumab mertansine preclinical dose 45 mg/kg/3 weeks versus ~ 6 mg/kg/3 weeks clinical dose

Learning from False Positives

- Drug exposures in mice exceeding those tolerated in humans
- ADC dosing
- Cytotoxic agent dosing (e.g., PR-104, temozolomide, etc.)
 - PR-104: Houghton PJ, et al: Pediatr Blood Cancer 2011, **57**(3):443-453
 - Temozolomide: Keir ST, *et al*: *Pediatr Blood Cancer* 2013, **60**(5):783-790
- Mitotic kinases

Lesson 5:

PDX models overpredict for activity of mitotic kinase inhibitors, which is likely a result of faster cell cycling times in PDX models compared to patient tumors

Mitotic Kinase Inhibitors

in vivo testing of multiple mitotic kinase inhibitors (alisertib, BSK923295A, volasertib, ispinesib)

Maris et al. 2010. Pediatric Blood Cancer. 55(1):26-34.

High ORR for In Vivo Testing of Mitotic Kinase Inhibitors

Agent	Target	Solid Tumor		Acute Lymphoblastic Leukemia	
		# Tested	ORR	# Tested	ORR%
Ispinesib	KSP5	30	23%	8	75%
Alisertib	Aurora A kinase	41	27%	6	100%
GSK923295A	CENP-E	37	32%	6	83%
Volasertib	PLK1	34	9%	8	63%
ALL Models Tested		142	23%	28	79%

- Clinical activity <u>limited</u> in pediatric and adult clinical trials
- Preclinical models proliferate at faster rates than tumors in patients
- Preclinical testing using clinically relevant schedules and doses can minimize risk of over-prediction (Mosse YP, et al. Clin Cancer Res 2019, 25(11):3229-3238)

Combined Testing Lessons

Combination Testing

- Additivity: Explains success of most recent FDA-approved combination regimens (Hwangbo H, et al. Nat Cancer 2023, 4:1693-1704)
 - Menin inhibitor and SOC agents both effective, and their combination is more effective than either used alone (AACR-NCI-EORTC 2023)
- Rapamycin example for rhabdomyosarcoma showing in vivo therapeutic enhancement
 - Rapamycin showed therapeutic enhancement for some rhabdomyosarcoma models with cyclophosphamide and vincristine (Houghton PJ, et al: Molecular Cancer Therapeutics 2010, 9(1):101-112)
 - Little single agent activity in clinic for temsirolimus against pediatric cancers
 - Combination with SOC agents ineffective in phase 3 trial ARST1431 (Gupta AA, *et al*. Lancet Oncology 2024)
- Supra-additivity/synergy: highly sought characteristic but a <u>two-edged</u> concept
 - Talazoparib and temozolomide remarkably effective in combination for Ewing sarcoma in vivo models while neither effective as single agent (Smith MA, et al: Clin Cancer Res 2015, 21(4):819-832)
 - Clinical testing of talazoparib and temozolomide showed synergistic effect applied strongly to normal tissue (e.g., hematopoietic cells) (Schafer ES, et al. Pediatr Blood Cancer 2020, 67(2):e28073)

More Lessons

- PDX models are developed in immunodeficient mice, which limits their use in immunoncology studies
- Overall genomic architecture of PDX models mirrors patients...but subclonal heterogeneity may be lost and may influence testing outcomes
- Gene expression levels do not always correspond to protein abundance
- Additional –omic characterization of PDX models needed (e.g., epigenetic profiling)
- Collections of preclinical models do not always reflect the diverse ancestry of pediatric patients

Recent Results – AACR 2025

<u>The CLK/DYRK inhibitor SM09419 shows potent efficacy across a broad panel of</u> <u>pediatric preclinical xenograft models: A report from the Pediatric Preclinical In Vivo</u> <u>Testing Consortium (PIVOT) (pdf)</u>

<u>Preclinical evaluation of the AKR1C3-activated alylator, OBI-3424, in hepatoblastoma- A</u> <u>report from the Pediatric Preclinical In Vivo Testing Consortium (PIVOT) (pdf)</u>

<u>The B7-H3 targeting antibody-drug conjugate (ADC) Vobramitamab Duocarmazine</u> (Vobra Duo) is potently effective against a broad panel of pediatric solid tumor xenograft models: A study from the Pediatric Preclinical In Vivo Testing (PIVOT) consortium (pdf)</u>

https://preclinicalpivot.org/publications-and-presentations/

Volume 29, Issue 6, 5 November 2019, Pages 1675-1689.e9

Resource

Genomic Profiling of Childhood Tumor Patient-Derived Xenograft Models to Enable Rational Clinical Trial Design

Jo Lynne Rokita¹²³, Komal S. Rathi²³, Maria F. Cardenas⁴, Kristen A. Upton¹, Joy Jayaseelan⁴, Katherine L. Cross⁵, Jacob Pfeil⁶, Laura E. Egolf¹⁷, Gregory P. Way⁸, Alvin Farrel², Nathan M. Kendsersky¹⁹, Khushbu Patel², Krutika S. Gaonkar²³, Apexa Modi¹⁸, Esther R. Berko¹, Gonzalo Lopez¹², Zalman Vaksman², Chelsea Mayoh¹⁰, Jonas Nance¹¹, Kristyn McCoy¹¹...John M. Maris¹³³ 〇 函

Extensive Pediatric Tumor Genome Data Aids with Preclinical Experimental Design

Pediatric Cancer Studies	15
Bone	2
CNS/Brain	2
Kidney	2
Lymphoid	3
Myeloid	1
Other	5
Peripheral Nervous System	2
Soft Tissue	1

Pediatric Cancer Studies

	Pediatric Preclinical Testing Consortium (CHOP, Cell Rep 2019)	261 samples 🛈 뢷
	Pediatric Acute Lymphoid Leukemia - Phase II (TARGET, 2018)	1978 samples 🛈 🖉
	Pediatric Rhabdoid Tumor (TARGET, 2018)	72 samples 🛈 🖉
	Pediatric Wilms' Tumor (TARGET, 2018)	657 samples 🔀 🖉
	Pediatric Acute Myeloid Leukemia (TARGET, 2018)	1025 samples 🔀 📕
	Pediatric Neuroblastoma (TARGET, 2018)	1089 samples 🔀 🖉
	Pediatric Pan-Cancer (DKFZ, Nature 2017)	961 samples 🔁 💻
	Pediatric Pan-cancer (Columbia U, Genome Med 2016)	103 samples 🔀 🖉
	Acute Lymphoblastic Leukemia (St Jude, Nat Genet 2016)	73 samples 🔁 💋
	Acute Lymphoblastic Leukemia (St Jude, Nat Genet 2015)	93 samples 🕄 💻
	Pediatric Ewing Sarcoma (DFCI, Cancer Discov 2014)	107 samples 🔁 💻
	Ewing Sarcoma (Institut Curie, Cancer Discov 2014)	115 samples 🕄 💻
	Medulloblastoma (PCGP, Nature 2012)	37 samples 🕄 💻
	Pediatric Neuroblastoma (MSK, Nat Genet 2023)	223 samples 🕄 📒
- E	Pediatric European MAPPYACTS Trial (Gustave Boussy, Cancer Discov 2022)	178 samples 🕅 🖉

https://www.cbioportal.org/ https://pedcbioportal.kidsfirstdrc.org/

NIH

Pediatric Preclinical Testing Consortium (CHOP, Cell Rep 2019) 📥

Whole-exome sequencing of 261 patient derived xenografts (PDXs) samples from high-risk childhood cancers (with no matched normals).

Cancer Type Detail	ed	
	#	Freq -
B-Lymphoblastic Leukemia/Lym	37	14.2%
Osteosarcoma	36	13.8%
Neuroblastoma	35	13.4%
Medulloblastoma	20	7.7%
T-Lymphoblastic Leukemia/Lym	🗌 19	7.3%
B-Lymphoblastic Leukemia/Lym	🗌 15	5.7%
Wilms' Tumor	🗌 13	5.0%
Atypical Teratoid/Rhabdoid Tumor	🗌 12	4.6%
Acute Leukemias of Ambiguous	🗌 10	3.8%
Ewing Sarcoma	🗌 10	3.8%
Alveolar Rhabdomyosarcoma	6	2.3%
Search		

Genomic Profile Sample Counts			
Molecular Profile	#	Freq -	
Mutations	261	100.0%	
Putative copy-number alterations	252	96.6%	
mRNA Expression (RNA-Seq FPKM)	244	93.5%	
Structural variants	244	93.5%	
mRNA Expression z-Scores (RNA	244	93.5%	

What's Next?

Genomic data for an additional 250 or so pediatric preclinical models sequenced by Alpha Hudson has just been completed

- Working on data access with NCI's Childhood Cancer Data Initiative (CCDI) team
- https://datacatalog.ccdi.cancer.gov/search?search_text=PIVOt&page=1

cBioPortal for PDX Genomic and Preclinical Testing Data

e cBioPortal for Cancer Genomics pro ease adhere to <u>the TCGA publication o</u> ease cite Gao et al. <i>Sci. Signal.</i> 2013 Query	ordes visualization, analysis a <u>guidelines</u> when using TCGA da & Cerami et al. <i>Cancer Discov</i> .	and download of large-scale canc ata in your publications. 2012 when publishing results bas	er genomics data sets. ad on cBioPortal. Please cite cBioP	What's New New data and features released New tools released Sign up for low-volume email news alerts: Subscribe
Select Studies for Visualization & Analysis:	3 studies available (8563 samples)	Data type Search	•	Or follow us @cbioportal on Twitter Example Queries Treatment Response in JAX models Testimonials
Other 3	Select all listed studies (3) Other Cancer of Unknown Primary		Help 🖉	 "Thank you for your incredible resource that has helped greatly in accessing the TCGA genomics data." Postdoctoral Fellow, Johns Hopkins University School of Medicine, Dept Radiation Oncology au Molecular Radiation Sciences
	MIXED CANCER TYPES Jackson Lab PDX models wit PDMR PDX models Pediatric Preclinical Testing C	h patient IDs onsortium (CHOP, Cell Rep 2019)	1183 samples 🕈 🖉 🖗 7119 samples 🕈 🖉 🐓 261 samples 🔂 🖉 🐓	G Vie
3 studies availe	able (8563 samples)		plore Selected Studies	

https://cbioportal.informatics.jax.org/

Patient Timeline in cBioPortal

Q

Q

Integrating PDX Genomic and Preclinical Testing Data

A single PDX model can be evaluated for multiple treatments tested in parallel

cBioPortal Oncoprint Visualization of PDX Study Data (One Model; Many Treatments)

Next Steps

- Integrate recent genomic data for pediatric PDXs into cBioPortal
- Restructure PPTP/PPTC treatment response data to work with the new Oncoprint PDX treatment visualization paradigm

Acknowledgments

How You Can Engage with CCDI

Learn about CCDI and subscribe to our monthly newsletter: cancer.gov/CCDI

Access CCDI data and resources: ccdi.cancer.gov

Questions? Email us at: NCIChildhoodCancerDataInitiative@mail.nih.gov

Join Us at Our Upcoming Events

NCI Office of Data Sharing: Data Jamboree

September 29–30, 2025

2025 CCDI Symposium: Collaborate, Innovate, Transform,

October 6–7, 2025

Learn more and register:

https://events.cancer.gov/nci/ods-datajamboree

Learn more and register:

https://events.cancer.gov/nci/ccdisymposium

Thank you for attending!

cancer.gov/espanol

cancer.gov